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CROSS= VALIDATION, LEARNING SET TRANSFORMATIONS, AND GENERALIZATION

by David H. Wolpert
Thuxelical Division, MS B213, LANL, Los Alamos, NM, 87545 (dhw@cooLlmsl.gov), (505) 665-3707

Abstzac~ This papr discuses using cross-validation u an aid to genmali.zation. It starts by showing how m use cross-voli-
da[ion 10 d~ide arnongsl a set of generalizcrs when the learning set consists of examples of rhe [ext-to.phoneme problcm. [n
addiuon to reproducing the Icazning, set ~rfeclly, the generdizm w chosen by moss-validation has an es?or rate on (he le.vin v
set (7%) dose to hi which NETmlk h~ on tie learning se[ (5%). This papwr hen presents an example of using cross. v~lid~.

tion ss pan of a front-end [o generaliurs, i.e., as part of an algorithm for pre-prrxessirrg a lemming set of inpuUou[puL cx~m-
ples before trying to generalize from i~ The resulrs of Lhiny-six comparisons between the performance of a gencrtiizcr ~nfl Ihc
performance of rhe generdim with this frcwwend are presented. These comparisons involve numerical. Boolenn, znd VISU.11

inks. In all but one of the comparisons k fro,lt+nd impoves the generaliztiion performance, of[en inducing Pcrfcc[ gcncr~li.
zmion. (The avenge ratio of the generdizx[ion ‘mm rate with rhe front-end to IJIC generalization error rale wi[hou[ hc frun!-
end is ,23, +/- .05.) Finally, lhi.s paper ends by dL,cussing some of Lh suhkr ma~hcma[ical ksues involved in using crnss-Vuli -

da[ion to help generalization.

INTRODUCTION

This paper concerns the problem of inferring u fuwtion from a su19sct of Rn to a subset of R (tie paren(

funclion) given a w of m samples of that function (the learning SCI). The subset of Rn is tie input space, ml

the subset of R is W ouput space. A qucsfion is any inpul sp=e value not containu.i in the learning set. i% til.
gorithm which makes a guess as to a pazent function (for any vafue of n), basing [he guess only on a Icaming

set of m Rn+l vectors read off of that parent func!ion, is called a generdizer. .4 gcneralizer infers an appropri-
ate outpul for a question via tie parent function il guesses.

Much of rhe research on generalization has followed two a~proaches. The first is to “just do it”: build an
engine which reproduces the learning sc~ aild then use that cngme to pwralize, An example of this ispprtiach
is back. propagated neural nets [ l]. Schemes of his typ devote most of their imeruion 10 reproducing IIW
Icaming set and expend little (if any) effort at uying to ensure good generalization. In effect, these suhcmcs
simply hope dtat good generalization ~companics reprcduing the learning set. Tbe advanusge of gcncrulimrs
of this type is rheir wide range of applicability.

The second approach us gencralimion rcwmh is typified by Valiant-style machine Icaming [2]. Here com-

!
Iete rigor is insisted upon (i.e., no reliatu on hop), but generality and real-world ap Iicability arc sacri-

rIced to achicvc the rigor, For example, most such schcmcs can not even address the fol owing Ioy problcm:
“You have a laming WI consisting of 3 inputioutpul pairs whcro the input space is onc.dimcnsionnl, [ 1.0,
1,,3), (2,0, n], and [@, 5.0), and no orhcr knowledge; guess the ouIpui correspmding to 5.5”. Such schcmcs
don’1 even address the full problcm of gcneralizuion, as it was defined ttkwc.

There arc a number of apprcwhes which fafl in Mwcen these fust two, using as much rigor as possible,
but afso exploiting heuristics, to maintain applicability 10 rwrl.world problems, Amongsl thr!se upprmtchcs
arc (roughl

r
in incnmsing order of sophiafication) Holland’s clnssiftcr system [3], memory-based rcwonm);

schemes [4 , regularimtion thm~ [5], other schemes for overt surface fitting of a parent function to tic Icorr -
ing xt [6. 10], ,nrrd information-theory based approaches [ 1I, 12], This pnpcr discusses anodrcr imcrrncdiulc up-
proach, cross-vtdidation [13, 14]. Cross+ alidation is sim Iy the idea that if you hnvc n set of gcncmlizcrs ml

Yn Icarnirig set and have 10 decide which of those genera imrs to use with lhal Icaming set, ou should ch(nlsc
i(hc cncralizcr which pcrfonns best at guessing one part of Ihe learning SC1nfter being taug 1 with lhc rcsl d’

rthe earning set. The pcm’ormance is usually mcwrecf with a squared guessing error, uveragcd over (some u!)
the panitioru of the learning set into two sub~rs. Many of tlw infomnation-fhcmy based approaches to gcncr.
ahznr.lon can be viewtd as variations of truss-vahdation (see footnote 4 In [ 14]),

Section I of this papr is an cxaznple of using cross-validation fm rho text-m-phoneme problcm, This t!x-
nmple idusfra(es the case with which croswalidation can result in gcncrali+lion superior to ihm of buck-
propagation. Section 11 presents a mom sophisticated example of using cross-vahdation, in this cnsc usin is w).

!!caflcd “lmtice gcncralizcr front end” to pm-process a Ico.rmng set hforc sending it on to n cncrnlizcr. ccllun
IIIII presents ICSM of tie cfficrtcy of lhis front end, 71c conclusion from this exam~le is at cross. validtilmlt

is n very powcfiul aid to such roprocewing. Finally, scclion IV is n cursory ovcrv Icw of some of tic slll~tl~r
irnmhematical issuc4 involved wi using cross-validation.

w. . USINf; CROSS-VALIDATION TO IIEAT NETtalk

NETtalk is n fccrlfmard neural net constructed by Scjnowski nnd Roscnbrg vin bnck-propagistirm for (IIC
Lrsk of reading English lcxl aloud [ 15], TIc input spwo consists of (M encoding of) seven Icltcrs. The oulpul



of the parent function is a multi-dimensional represcnLation of tie phoneme an Eng!ish speaker would ossign
to the middle (i.e., fourth) of du seven letters if the reader encountered rhem while reading aloud. NETQlk
has an error rate of - 5% on i~ learning set+~d - 22% on its Iesting set.

As a crude test of ils ulilily, cross-validation has been used 10 build a generalize for the rcding aloud
task and the resulting performance has been compared to lhat of NETudk, This genemlizcr, using the sunw
learning and testing sets as Sejnowski and RosenWg say he UWJ [161, nm an error rate on [he Ic.wning srt 01’

J0% and an error rale on the [cstig set of 7%, Icss than one this he error rate of NEThlk.
The details of how this generafizcr is bui.h can be found in [7]. One sw wilh a wcightaf average gcncr-

itlizer, one of the simplest kinds of generaf.izers. For his problem the weightai average gcncmlizcr works by
findin$ the four elements of the learning set which arc closest to the question, and Laking a weighw.d uvcrqgc
of them outputs to make Lhe guex. The weighting factm is the reci~al of the distance between tie question
and IJ’Ie Ieaming SC1element, w the ne,mr an element of the learning set is to the question, the more suongly
it is weighted in making tie guess. Using a simple Hamming metric, such a generallzer results in O% error on
[he leaning set and 18% error on the iesting seL

To use cress-validation, we carI consider a set of weighted-average eneralizers, all of which differ from
one anotier by using different versions of the standard Hamming metric. ! pacifically, we can consider gcncrtil-
izers of the form

guess = [~ [y(Xi) / d(q, Xi)] ) 1 (~ [1 / d(q, xi)] ), Where ‘d(a, b) ■ {~ [pa (1 - ~aa, bu))], 8(., .)
i-l 1=1 a= 1

is rhe Ksonecker delta, Icuers in bold arc veaors, reman subscripts of vecu’s index [he (input vectors of [he)
clcmenu of the Ieaming set nemcsl in input space to the question q, grd subscripts run over lhc Input corn”

ponenrs of a particular vec[or, md k p= arc a set of seven real valued cansumrs The usual Fhmming mcuic

hasaflthcpa=l.

Differem sets of pa give different guesses for tie me Iw.ming set and question, i.e,, [hey give clif[crcm

gcneralizers. Therefore ‘we can vsuy the pa, marsurc rhc rcsuhanl cross-validation efior for lhc lC~@ SC~,

and choose the pa widr the lowest such error. We then usc the generalizcr induced by this optimal SCI of P(I

10 eneralize from the entire Icaming SCL The results of this stra’c~y are depicted in figure 1. Using IIIC LICII.
rcm izer with minimaf cross+lidation emor, we would choose the genendizer correqmsding 10 the Icfunosl

circle in the figure. This hap~ns to be the gencrafizcr which also gives tie lowest error rate on [hc tcsllng
.sct. In [act, [his ,$eneralizer has an cn’or rate of mdy 7% on the resting set; cross-validation AM grcmly im
proved generalizauon efficac),

[1, MOTIVATION AND DEFINITION OF LATTICE GENERALIZES

A genetalizer is local if Ihe guea itmakes in response to a question is determined by a proper subscl ot
Ihc clemenul of the Ieaming set. Usually this subset consists of elements which am near (in input spucc) 10
the questior?. Such genemlizers thereforu rely on a fan of vectors connecting a question to thosr clcmcnts d
[he Icarning set which are deemed im

r
nant (for the task of making a guess fm Lhc question’s w ul).

tWeighted-average generalizcrs, memory- ascd rcmoners [4], the local linear technique [9] und HERBIEs [ , 71
arc all local generalizes, Back-propagated neuraf nets am somewhat local . afthough not explicitly Iccal tjcn”
cmlizcrs, rhcir guessing is often k more dependent on tie nearby elements of the Ica.rning set Ihart on imy
others, A j]cncrrtlinr is ~lobai if iu guess is determined by all elements of lhe Iwning set. An example 01’ J

r
Iobal gcnemlizer is fimng the elements of Ww learning set ex~tly with a iinear combination O( clcmcn[s
rom n SCI,of basis functions, Global generallzcrs have tie ndvantage (bet they use all of die infwrmtwn In

the learning SCL Local gcrtcrafizers have the advantage thnl they don’t “ovcrfll” the data of tic learning $~1.
itnd ticrcfcrc tend to be robusL

Lullice ~enerrdi;ers (LOs) arc a means of incorponsd.ng global infonna~icm into a local gcncrisl il.cr so
hat all the mforrnadon in theI Ieasrtlrrg set is explolmd (while robustness of generalization isn’t Sacriticcd),
A full description and Wcusslon of LOS can b found In reference [17], Here wc are conccnlcd wdh inpu[-indc.
pcndent LOs. In their slm~lcw form, such LGs assume that the quastlon and the elements of (he lemming WI
till live on a Inttice in the input space (hence the name w genemflzer). The rcwtrchcr provides II IOCUIgcn.
cnslizer for such a question und Iwrdng sCL Theh the LG takes iho original Icrumins SCI rmf qucslion M
trrtnsfomss thcm into a “reduced” learning set and “reduced” question, both of which live in the snmc “rcduccJ’

k!
input/ou ut s ace, The nlgorilhm for accm’npllshin !Jw rcductlon is known us the Lu//ice Gcneru/ircr From

JEnd (LG ). n Los, instead of fcerlln the origin Iwning set and the or;ginal qucstkm strai$ht 10 hc orll.
1imd (so-called “bnck.end”) Iocnl gctwr tzcr, the reduced Icarning .wt and reduced question urc Icd m lhc ~mgl.

naf genera.fizcr hstcad, The LGFE Iogclher wiih he buck.cnd gencrafizcr constitutes I.IWfull L6,
It is through [he LGFE tint lattice gcneraflzem mako MC of global ififormation, The LGFE cmrslrucls (IIL!

rcducccf Icarnirg set from he - components of W original Icnmkg .sct, The ~ components ol Ihc



original Iming set serve only 10 decide how to transform ‘he output componerws of the original Icmning SCI
inLo the reduced learning seL This decision is made using cross-validation, m concmt with die back-end gcncr.
alizer. A loose description of how an input-independent LGFE works follows:

Assume we have a fan consisting of m input space vectors [ri ), I < i < m, which connrxts a question m m

clemenls of Lhe learning seL Assume further that this fan connects some of Lhe elemen~ of lhc Icaming SC[
10 each olher (i.e., assume here exist elements of tie learning set such tit if [hey are Iaken as the base for
the fan, tie tips of Lhe fan zdso lie in Ihe learning set). For any such base in Lhe learning set, silice [hc lips ot’
Lhe fan lie on elemenu of the learning set, we can examine Lhe set of m oulpuL$ of tie learning SC1m lhcsc
tips. These m _ of lhe learairtp set are taken as k specification of a single point in an m-dimensional &
~ space. The out ut associated wlrh rhis m-dimensional input point is tie oulput of Idre learning SC[ clcmcn[

1’al tie base of Lhe an (we figure 2), By finding all bases for the fan which lie in the learning SCLwe can build
a sel of @m, (m-dimensional in ut vectors, associated ou ut). In this way we have used the fan to build J
new (reduced) learning set from i xe oulput components of e old one. We can use tie fan to read off tic rc.
duced question as well, and rhen wc can feed this reduced question along wirh the reduced learning sc~ 10 tic
original back-end generalize (instead of fudin it the original Iemring set).

!If we go through dlis prmxhrre for all arts which ccmnect together elemems of he original Icaming SCL,
then we will build a set of reduced learning sets, any one of which can be fed to Lhe back-end genem!izcr. To
decide which of rhe fans to use, we apply cross. va.fidmion: pick me fan such tiat tie new learning SC( it pro-
duces has lowest possible average emor at guessing pm of iwlf from the rest of itself. (This error is dctcr-
minrxi by running Lhe reduced Iearnin$ set lhrough the back-end gencralizer.) After choosing a fan in his way
and using it to build a reducrd Ieammg set and reduced question. use rhe back-end gcncm]izcr w; ,ir that rc.
duccd learning set and question to make (he guess.

11, TESTS OF LATTICE GENERALIZERS

The results of Winy-six lesls of the behavior o !.Gs for nine separate problems are prcsen[cd in figures
3(u) thargh 3(i). The lests involved running the L(.L on testing sets entirely different from lhe Icarning SC[S
with which they were tau hL All of lhe cxperimenrs were done wilh fans having only one tip.

/To make things dif Icult, all of the ex rimcnts look pl~c on a h
r T

rcube and used explicit sllrfocc-liucr
$cncmfizers as the back-end (WC [4-6] an [9]). Such generalizes usu Iy perform much beucr when tic dmir
Isn’t bmary-encotfed; such encoding c.onstimtes handicap in

&#
the generalizes severely. As is result, lhcsc m

good tests of the efficacy of feeding a gcnemlizer witi an L
For all of the nine problems presented here, the input space is six-dimensional, nnd each component d’ Jn

input vector can be either a 1 or a O. llercfom Ihere are 64 possible input vectors; ~he sum of the cardinal i[ics
of the lain set and the testing set is always 64, The figures represent the average behavior of an LG [or lhc

iqumlions in e testing set,Four testin set cardinalitics wcm investigated for each of the nine problems; II cl-
icmenr$ 16 elements, 32 clcmcnrs, WI 48 elemcnrs (cot-responding to learning sers of 56 clcmcrus, 48 CIC.

mcnts, etc.), For each size testing SCL 20 tesLs wem run by crcatin a mndom tes(in
i 7

set of tie given size,
The figures give the avcm?e percentage of wren guesm over tie 2

!
USN, for each o the nine problems, Ior

all four testing set cardinaliues. This gives a totaf o 36 tess.
Each fi urc shows Iwth the enerall.zation cmor rate of the b~k-end UWI without an LGFE and (hc crmr

d !witi the L FE in plwe. Ewh Igu.re also shows the em ral~ of optimal random guessing (i,c,, of Jlw:iys
guessing k mode of me ou ut distn’bution) and of back. propagaliom (The back-propagation dala was gcncr-
nted with the Oem~e Mason t niversity BPS 1,01,). The back.propgation wasn’t fcri vin an LGFE - IL WM
trrsined with dw ongintsl Icarnhtg set, Slrtcc back. propagctted ncumf nets me designed for the h ~rcube, lhcy

rwcrc USCIJ Ilcrc aS a SOrI of c~dc ~~hmwk for ~oblcms rakin pl~c on a hy~rcutrc, [n genera , Ilkc uny oil).
\cr enemlizcr, the gcnemlir.ing Ixhavim of back-propagation s ould usually Ix improved i( it is ful Ihruugh

Enn GFE.

~ Figure 3(a) throu h 3(d) depict an LG’s behavior for four bin
! Y

.cncodcd numerical prohlcms,
The prtrcnt function for wtch pmb em has a 6 dimensional input space,The first dimensions are the binary cn.
codin~ of a number between O and 7, cts are h lam 3 dimensions. The uutpul is onc of lhc bils of the hlnisry
cncodsng of Ik sum of dicse 2 numbers. Figure 3(a) refxesents the results for Ihe first (lciLs[ si~nificum) (N;[.

Y
U( bit, figure 3(b) the second output bit, and so on throu h flgurc 3 d), For cxmple, with inpul (1, 1, [1, (),

!0), the four output bi~ should be the binary cncodln o 6 + 2 ■

!
i So for the situcttion dc ictcd in t’igurc

3~u), the cormt output of a gcncrallzcr would km a , !IIS i: would ‘for figures 3(b) nnd 3 c); Wurc J(d)
would httV6 a I IIs tk COmZCtOUl~L

The back. end gencralizcr U@ for these fiml four tcsu is a wcighwd avcroge gcncralizcr running over (I)c
seven elements of the learning set ncarem m the question, AS with all the other mws prcscntcd here, Ior [Iww
[csts the dark circles lying on the O% axis have exactly O% error in guessing. For caumplc, in ~igurc Mu), l’~lr

Me ctt.se of 32 elcmenl Ie.aming seu tkre were ZCKSgcncrrllizing em)rs out of 20 x 32 = 640 Lritils, ‘ll\c l, GI;I1
induced peflect generalitalion!

~: Fi UM 3(c) also represcn~s a test of a biruuy system with 6 dimensions of input und Lhcrul’(m
1’with 64 possib c Inputs, Hera he nrent function has a hlcart nrm.u’e: if the Iirst dlmcnsion hits VUIUC 1, LIw

!output Is the vahlc o{ dlmcnsion , othcnviso h’s k vnlue of dimension 6, Note ihat time of the input di.



mensions are unimportant they’re red herrings. The genera.kr is again a (normalized) weighted average gcner-
alizcl.

~: Figure 3(f) again depicts a situation where the input s
3

e is binary and 6-dimensional, but now
the output spree is no longer binary. The poblem here is of a vis name: taking ?he 6 input dimensions m a
6-pixel wide window, wan from rhe left of the window until vou hit a 1; the ouiput is rhe ~lumbcr of
scanned pixels. Here the genedizer fed by rhe LGFE works by finding the 7 pints of kc leaning SCI nearcsL
ihe question, fitting a hypplane to rhem, and outpKing the height of he hyperplane when the inpul is [hc
question. (If the 7 nearest points are linearly degenerate, weighted averaging is used instead.)

Tests 7 and & Figures 3(g) and 3(h) depict he results of a test related to the (two clump)/( dwee clump)
problem: count ~ numker of I‘s in the 6 components of the input. Test 7 (figure 3(g)) uses a hyperplane fit-
ter as its generalszer, just like test 6, whereas ~t 8 uses a weighted average gened.izer, For the coun[ing
problem, tie parent function is given by output = x, * j+ x + x + x4 + x5 + x6t the sum of the 6 compncms

of che inPuL Since this function is a h~rplane, the hyperplane titter generalizes better than the weighted av-
erage fitter. (TIE errors of the h rplane fitter acur when the marest neighbors of & qwslion arc linearly
degenerate, so some algcaithm R ferent from fitting a h

P
lane has to be used). Even so, the generalizcr

consisting of an LGFE feeding into a h~rplane gene UeJ @onns &tter than the hyper@me genera.lizcr
alone, it generalizes @?.cIIy in ftxL Just as a hyp@me fitter is wen-suited to guessin this parent func-
tion, a weighted average generalize is porly suited to this task. Nonetheless, except for i e case of 8 point
testinp sets, feeding the output of the LGFE into the average weighted genendizer still produces bcuer gcncr.
alizauon thanruntirr arravemge weighted generalizeswithout the LGFE front-end.

!Test 9: Figure (i) depicts the rcsuhs for the pity problem. The problem has 6 bits of input as USUOI,
widl 1 bit of output. The output is a 1 if there is art odd numbr of 1‘s in the input, O wherwise, (Note lhis
function is just the output of the count function evaluated mod 2, i.e. it’s the low bit of the count problem’s

%
ou ut if that output is binafy+mmded.) The bitck-end genemdizer is the h~rplane fitter. Note how poorly
b back-propagation and the h

F
lane fitter

f
rfonn. The reason for this isn’t hard to find: both back-

propgation and tlM hypph- mer are Iocaf gorithms. But on a h
w

ube the six nearest neighbors O(
any ~uestion will differ from that que.uicmby one biL This mrans that or the parity problem the cwtpurs of
the slx newest neighbrs is cxsaly _ to the correct gtma. As a result, lord generafizers Prform ex-
tremely porly.

llse prity problem is a
r

example of how
r

icious bi
?

encodings of problems are, taking plats as
they do at the vcrths of a ypercube, After afl, h~lane mer dc&s much better at guessin the entire

foutput of the count roblern than at guessing the low bit of that output (given in the parity prob em), Nom,rhowever, that the fu I LG handlm both the @ty problem and the full count problem quite well, hypercub
or no. !1 handfes them perfeclly, in fWL

The resulm of lhese tests are unambiguous, In all but one of the thirty-six cases presented here, using tie
LGEE front-en~~ produces betfex genertdiuion. (T’he only case where there was no improvement had the LG
pcrfonnin just ~arely worse than the strai ht bwk-end.) Often usc of the LGFE even results in perfect gcncr.
alization. k !e average value of the mtio o the genedization errrx rate with tie LGFE 10 the error mle wilh-
out one is ,23, with art e.sd.rnatcdenor in this mean of .G5.

In addition to these em irical results, there are many theomieal advantages to LGs as well. A list of

!some of them can be found in 17],

IV. SELF.GUESSI’NG ANG CROSS-VALIDATION

As presented so far in this paper. crosswlidation is used as a means for chcmsing amongst a fixed fini&
set of possible genera.krs of a learning set. It can also be used to uy to conmuct the optimaf genenlizcr of
u given learning set from first @tciples, The idea is to demand

F
ect cross-validation on the learnin set

along with some other ratridortq and thereby deduce the (ho
r

!ully unique) optimal generalization o [hc
Icarninp set. When ttsd in this wa cross.va.hdation is refene to as “self.guessing” [14]. An overview uf

fsome 01 the more interesting aspectso self- uesslrtgis
f r

*ntcd in this section.
here are saveml d.lffcrcrttversions o self-guessn .

II
For example, If we only demand that the genera.lizcr

lmfcxtly guess a subset of the karnirr
I

set when taug t with the (sufflciem.ly Iar e) remainder of the Icarn.
mg SCL then we are enforelng weta& se f-

r

1!wting. We can instead &nand, somew at in the spir-h of distribu-
(ion.free learning [2], that the futdon ,) from inputs to outputs ~ascd b the generallzer have the fol.
lowin p~rty: f(,) reproduces our learning set, and if we were

% d
{wen ~ earning set of *mples of f(,),

then t e genetdlz,er would ueaa t6e input.ou ut function f(.),
/ L

is is called strong self-guessing; strong
self- ttessirrff Implbs weak WI -gwsslng, but not v

h
.Vm.

cm are a number of hstaredrt facts about M-guessing. Fm exam lo, there are an uncoumably infinite
numbs of self- uesaing generahra

!
%0 fth weak and suon ) for arty Ieam n set,On theother hand, ~ encr.

! ! !olk.er is
r

flu y ~lf.gwuhtg (eI&r strongly or weakfy for u loam ng set. Moreover, there are carn-
iti~ sets or which there are no self.guulng generallzmrs whatsoever, if we also rquirc that the gencrrdizcr
obey the invarkancesof Euclideans ace,

Of parwrtount Irrtporwtce is f e followln fact: h might be ho@ that we could constmct a set of rcsuic.
tlions on the set of genmdizers s~h l.ha~ or any particular Icarrting SCL here is only a single gcncrulizcr



which froth meets the resrnctiort and is self-guessing (eiher weakly or strongly) for him learning set. Unfor-
tunately, it can be ~ven llm hem is no such set of resuicrions on the set of general.izers. Any such SCI of
resrnctions will either be urrder-rcsaictive (i.e., there are Ieaming sets for which there are more than one w 1[.
guessing genetir which meet the set of resuictions) or over-msuictive (i.e., there are learning scu for
which there are no self-guessing generafizers which meet the se! of restrictions),

This means hat IJKre me W ways to exploit self-guessing. The fmt is to still demand perfect sclf-
guessing, but not to demand that a particular set of restrictions is met exactfy, [ns~d, one chooses the scIf.
guessing generalize which obeys most closely (according to an a~priate mernc) the set of resmicuons. The
second a roach is to demand neithw perfect WIf-guessin nm that any set of resuictions is met exactly, and

1? !instead c cmsc that generdizer which is as close as possib e to being berth self-guessing and in accord wilh lhc
set of restrictions. Finally, one can demand that some w of restrictions is met exacr.ly, and then choose tic
generalize which is most closely self-guessing. The w of restrictions in this case is often implici[, (For CX.
ample, in section 1, the set of restrictions was mat the genaa.b.zer be expressible as a weighted-average gcncr-
a.bzer.) When usd with weak self-gues..ing, this last approach amounts to standard crcrss-wdidation.

CONCLUSION

This paper has presented ex~rirnentd evidence that cross-valition aids generalization greatly (i.e., rc-
sulfs in markedly improved guessing), The evidence comerns both naive uses of cross-vafidauon and usurg u m
a more sophkicated manner, as a learning set prqmxessx. In addition, this paper has surveyed some of [he
theoreucaJ aspezts of cross-validation and dkussd theis implications fcx how and when cross-valkruon cun
be profitably employed.
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Figure 1. The -M axis givcs M erKX raft of eight difFeruIt gcnedizers fa gue@ng 2189 elemcn~ of
the (remling ale@ king sei wk taught with the rest of the fcaming SCL The vetical axis gives tie error
ram fm gucmng the 2189 clunerm of the tming set wheretaught with the full fcaming m (see reference [71
for details). The cormhu.ion Ix?twtm the two ~ is clear. The cross-vahiatkm error rate of fUETuafk is un.

known, but its error rate on tie testing w is 22%.
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Figures 2a and 2b. An input-indepdent ~, TIw left half of -h figw tqmeaenu n lc8rnmrg set and a question.

lllc elements of the karnlng w are solid circba, the quc-atkmia an optr circle. There are two dimensionsof in-

put. The output valtm d each element of the learning w is indicated hen the outputs arc all either O, ,5, or 1.
Also shown in he left half of each flgue is a 24p fan, tmnslatd OV!7 weral different baaes,The fan in (la)

mak?sa connection anmigat the elcrncntaof the Iarnhg set twke. The fm in (lb) makes a ccmncctionnmongs~

the elemenfs of the Imming aat four time% Every conmcion defhtea an element in a new learning set over a 2.

dimensional Input apace, In (la) fw example the zwo such eleme,da are ((.5, I), i)) and ((,5, O), l). The new
learning setsmade irt Ma My are indcated in h riOht halvea of ~ch figure, The back-tnd gencralizer usesthese

new learning sets. ‘l?m LOFH sctvti to crraIG these new Ic.arnirtgacts, To answer tlw question in (I a), the quest.

ion is ccm .wM (via d’mfan of (la)) to the rww queathm (0, .$, The Wk.end gc.neralizc#then takca Ibis new
aucation and ttw new Ie-wnlng%t ml c- q) with a gu~a. TO &cide which of the fana to USC,we find the ftin
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Figures 3(e) through 3(i). Open circles represent the guessing of a gencralizer, Solid circles
represent the guessing of dmt gcncralizcr being fed by an LGFE. Squares represent the guess-
ing of back-propagation. The dotted line indicates the bcttavior of guessing the mode of the orig-
inal learning set’s output diminution.The horizontal axis gives the testing set size, and the
vertical axis gives the error rate at guessing the elements of the testing w. The specific probl-

em represented by each of the 9 figures is described in the text.


